Revision 0.71

2019-02-26

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information

Product	Application
Tunable 1064 nm DFB Laser	Spectroscopy
with hermetic 14-Pin Butterfly Housing (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	Nd:YAG Replacement
with PM Fiber, integrated $\mu\mbox{-}Isolator$ and Angled Physical Contact (APC	_)

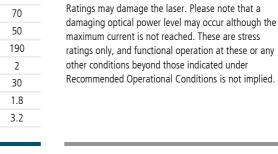
Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	T _C	°C	-15		70
Operational Temperature at Laser Chip	T _{LD}	°C	10		50
Forward Current	I _F	mA			190
Reverse Voltage	V _R	V			2
Output Power	P _{opt}	mW			30
TEC Current	I _{TEC}	А			1.8
TEC Voltage	V _{TEC}	V			3.2

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	5		60
Operational Temperature at Laser Chip	T _{LD}	°C	15		40
Forward Current	l _F	mA			170
Output Power	P _{opt}	mW	8		25

Characteristics at T_{LD} = 25° at BOL


Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ _c	nm	1063	1064	1065
Linewidth (FWHM)	Δλ	MHz		2	
Mode-hop free Tuning Range	$\Delta\lambda_{tune}$	pm		1500	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dI	nm / mA		0.003	
Sidemode Supression Ratio	SMSR	dB	30	45	

Distributor

info@amstechnologies.com www.amstechnologies-webshop.com

Contact us

Measurement Conditions / Comments

Measurement Conditions / Comments Stress in excess of one of the Absolute Maximum

measured by integrated Thermistor

Measurement Conditions / Comments see images on page 4 P_{opt} = 25 mW P_{opt} = 25 mW

Revision 0.71

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at T_{LD} = 25° at BOL cont'd						
Parameter	Symbol	Unit	min	typ	max	
Mode-hop free Temperature Range	T _{LD}	° C	15		40	
Mode-hop free Power Range	P _{opt}	mW	10		25	
Laser Current @ $P_{opt} = 25 \text{ mW}$	I _{LD}	mA			170	
Slope Efficiency	η	W/A		0.3		
Threshold Current	I _{th}	mA			70	
Polarization Extinction Ratio	PER	dB		20		

Measurement Conditions / Comments						
$P_{opt} = 25 \text{ mW}$						

Monitor Diode

Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	µA/mW	2		50

Thermoelectric Cooler

Symbol	Unit	min	typ	max
I _{TEC}	А		0.4	
U _{TEC}	V		1.5	
Ploss	W		0.5	
ΔΤ	К			45
	I _{tec} U _{tec}	I _{TEC} A U _{TEC} V	I _{TEC} A U _{TEC} V	I _{TEC} A 0.4 U _{TEC} V 1.5

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10) -3
Steinhart & Hart Coefficient B	В			2.3410 x 10) -4
Steinhart & Hart Coefficient C	С			8.7755 x 10) -8

Measurement Conditions / Comments $U_R = 5 V$

Measurement Conditions / Comments				
$P_{opt} = 25 \text{ mW}, \Delta T = 30 \text{ K}$				
$P_{opt} = 25 \text{ mW}, \Delta T = 30 \text{ K}$				
$P_{opt} = 25 \text{ mW}, \Delta T = 30 \text{ K}$				
$P_{opt} = 25 \text{ mW}, \Delta T = \text{Tcase} - \text{TLD} $				

$T_{LD} = 25^{\circ} C$		
$R_1 / R_2 = e^{\beta (1/T_1)}$	$^{-1/T_2)}$ at $T_{LD}=~0^\circ$ \ldots 50°	С
1/T = A + B(ln f	R) + C(ln R) ³	
T: temperature	n Kelvin	
R: resistance at	T in Ohm	

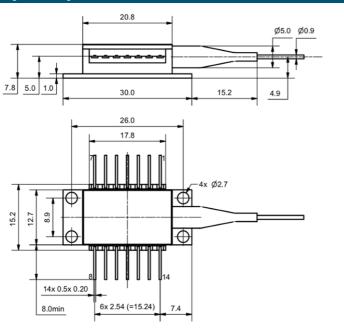
© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

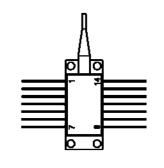
2019-02-26

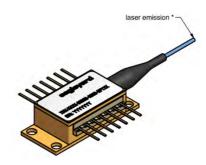
Revision 0.71


2019-02-26

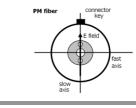
SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Pin Assignment


1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photodiode (Anode)	12	not connected
4	Photodiode (Cathode)	11	Laser Diode (Cathode)
5	Thermistor	10	Laser Diode (Anode)
6	not connected	9	not connected
7	not connected	8	not connected
Pins	are isolated from case unless noted otherwise.		


Package Drawings

Fiber and Connector Type


PM Fiber	900 / 125 / 6.6 $\mu m,$ UV/Polyester-elastomer Coating (l = 1 +/-0.1 m)
Connector	FC/APC (narrow key / 2mm)

Caution. Excessive mechanical stress on the package can lead to a damage of the laser. See <u>instruction manual</u> on www.eagleyard.com

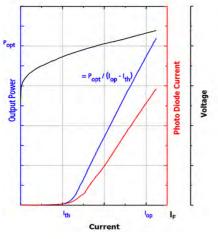
Measurement Conditions / Comments

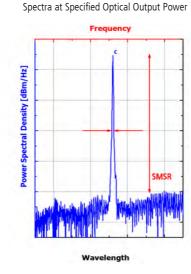
© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

AIZ-16-0222-1415


info@toptica-eagleyard.com www.toptica-eagleyard.com


Revision 0.71

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Typical Measurement Results

Output Power vs. Current

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

2019-02-26

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

Revision 1.04

2019-02-26

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information

Product	Application
1064 nm DFB Laser	Spectroscopy
with hermetic 14 Pin Butterfly Housing (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	Nd:YAG Replacement
with PM Fiber and Angled Physical Contact (APC)	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	T _C	°C	-40		85
Operational Temperature at Laser Chip	T _{LD}	°C	10		50
Forward Current	I _F	mA			190
Reverse Voltage	V _R	V			2
Output Power	P _{opt}	mW			45
TEC Current	I _{TEC}	А			1.8
TEC Voltage	V _{TEC}	V			3.2

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	-20		65
Operational Temperature at Laser Chip	T _{LD}	°C		25	
Forward Current	I _F	mA			170
Output Power	P _{opt}	mW	10		40

Characteristics at T_{LD} = 25° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	1063	1064	1065
Linewidth (FWHM)	Δλ	MHz		2	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dI	nm / mA		0.003	
Sidemode Supression Ratio	SMSR	dB	30	45	

Distributor

info@amstechnologies.com www.amstechnologies-webshop.com

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Measurement Conditions / Comments

Revision 1.04

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at I _{LD} = 25° at BOL					
Parameter	Symbol	Unit	min	typ	max
Laser Current @ $P_{opt} = 40 \text{ mW}$	I _{LD}	mA			170
Slope Efficiency	η	W / A	0.2	0.4	0.7
Threshold Current	I _{th}	mA			70
Polarization Extinction Ratio	PER	dB		20	

Measurement Conditions / Comments						
$P_{opt} = 40 \text{ mW}$						

Monitor Diode

Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	µA/mW	1		30

Thermoelectric Cooler

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U _{TEC}	V		0.8	
Power Dissipation (total loss at case)	Ploss	W		0.5	
Temperature Difference	ΔΤ	К			50

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10) -3
Steinhart & Hart Coefficient B	В			2.3410 x 10) -4
Steinhart & Hart Coefficient C	С			8.7755 x 10) -8

Measurement Conditions / Comments	
$P_{opt} = 40 \text{ mW}, \Delta T = 20 \text{ K}$	
$P_{opt} = 40 \text{ mW}, \Delta T = 20 \text{ K}$	
$P_{opt} = 40 \text{ mW}, \Delta T = 20 \text{ K}$	
$P_{opt} = 40 \text{ mW}, \Delta T = Tcase - TLD $	

Measurement Conditions / Comments

 $U_R = 5 V$

_{LD} = 25° C	
$R_{1}/R_{2}=e^{-\beta(1/T_{1}-1/T_{2})}$ at $T_{LD}=$	0° 50° C
$1/T = A + B(\ln R) + C(\ln R)^{3}$	
T: temperature in Kelvin	
R: resistance at T in Ohm	

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

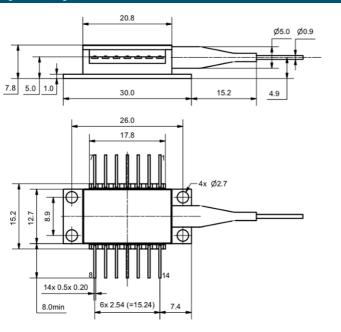
eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

info@toptica-eagleyard.com www.toptica-eagleyard.com

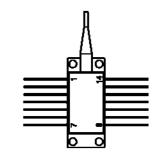
2019-02-26

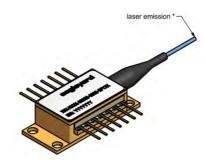
Revision 1.04


2019-02-26

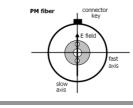
SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Pin Assignment


1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photodiode (Anode)	12	not connected
4	Photodiode (Cathode)	11	Laser Diode (Cathode)
5	Thermistor	10	Laser Diode (Anode)
6	not connected	9	not connected
7	not connected	8	not connected
Pins	are isolated from case unless noted otherwise.		


Package Drawings

Fiber and Connector Type


PM Fiber	900 / 125 / 5.5 $\mu m,$ UV/Polyester-elastomer Coating (l = 1 +/-0.1 m)
Connector	FC/APC (narrow key / 2mm)

Caution. Excessive mechanical stress on the package can lead to a damage of the laser. See <u>instruction manual</u> on www.eagleyard.com

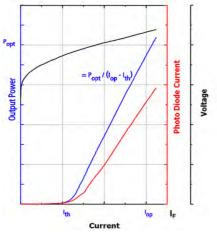
Measurement Conditions / Comments

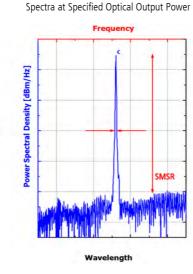
© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

AIZ-16-0222-1415


info@toptica-eagleyard.com www.toptica-eagleyard.com 3/4


Revision 1.04

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Typical Measurement Results

Output Power vs. Current

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

info@amstechnologies.com www.amstechnologies-webshop.com

2019-02-26

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

Revision 1.04

2019-02-26

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information

Product	Application
Tunable 1064 nm DFB Laser	Spectroscopy
with hermetic 14 Pin Butterfly Housing (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	Nd:YAG Replacement
with PM Fiber and Angled Physical Contact (APC)	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	T _C	°C	-40		85
Operational Temperature at Laser Chip	T _{LD}	°C	10		50
Forward Current	I _F	mA			190
Reverse Voltage	V _R	V			2
Output Power	P _{opt}	mW			45
TEC Current	I _{TEC}	А			1.8
TEC Voltage	V _{TEC}	V			3.2

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	-20		65
Operational Temperature at Laser Chip	T _{LD}	°C	15		40
Forward Current	l _F	mA			170
Output Power	P _{opt}	mW	10		40

Characteristics at T_{LD} = 25° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ _c	nm	1063	1064	1065
Linewidth (FWHM)	Δλ	MHz		2	
Mode-hop free Tuning Range	$\Delta\lambda_{tune}$	pm		1500	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.003	
Sidemode Supression Ratio	SMSR	dB	30	45	

Distributor

info@amstechnologies.com www.amstechnologies-webshop.com

Contact us

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Measurement Conditions / Comments

Measurement Conditions / Comments

see images on page 4
$P_{opt} = 40 \text{ mW}$
see note 1)
$P_{opt} = 40 \text{ mW}$

Revision 1.04

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at T_{LD} = 25° a	t BOL				cont'd
Parameter	Symbol	Unit	min	typ	max
Mode-hop free Temperature Range	T _{LD}	° C	15		40
Mode-hop free Power Range	P _{opt}	mW	10		40
Laser Current @ $P_{opt} = 40 \text{ mW}$	I _{LD}	mA			170
Slope Efficiency	η	W / A	0.2	0.4	0.7
Threshold Current	I _{th}	mA			70
Polarization Extinction Ratio	PER	dB		20	

Measurement Conditions / Comments				
$P_{opt} = 40 \text{ mW}$				

1) This variant allows wavelength tuning by temperature or current variation; in case of external backreflections small mode-hops of 100 MHz or less may appear; the use of a BFW01 or TOC03 package variants and effective optical isolation is recommended for spectroscopic application requiring absolutely mode-hop-free tuning.

Monitor Diode

Parameter	Svmbol	Unit	min	tvp	max
Monitor Detector Responsivity	I _{mon} / P _{opt}		1	56	30

Measurement Conditions / Comments $U_R = 5 V$

Thermoelectric Cooler

Symbol	Unit	min	typ	max
I _{TEC}	А		0.4	
U _{TEC}	V		0.8	
Ploss	W		0.5	
ΔΤ	К			50
	I _{tec} U _{tec}	I _{TEC} A U _{TEC} V	I _{TEC} A U _{TEC} V	I _{TEC} A 0.4 U _{TEC} V 0.8

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10) -3
Steinhart & Hart Coefficient B	В			2.3410 x 10) -4
Steinhart & Hart Coefficient C	С			8.7755 x 10) -8

Measurement Conditions / Comments
$P_{opt} = 40 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 40$ mW, $\Delta T = 20$ K
$P_{opt} = 40$ mW, $\Delta T = 20$ K
$P_{opt} = 40 \text{ mW}, \Delta T = Tcase - TLD $

Measurement Conditions / Comments	
$T_{LD} = 25^{\circ} C$	
$R_1/R_2 = e^{~\beta~(1/T_1~\cdot~1/T_2)}~$ at $T_{LD} =~0^\circ~\ldots~50^\circ~C$	
$1/T = A + B(\ln R) + C(\ln R)^{3}$	
T: temperature in Kelvin	
R: resistance at T in Ohm	

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

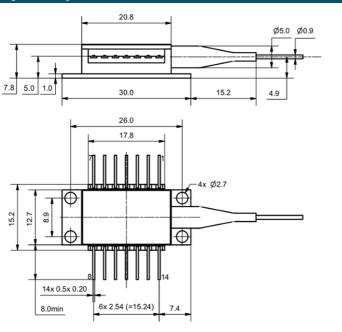
eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

info@toptica-eagleyard.com www.toptica-eagleyard.com

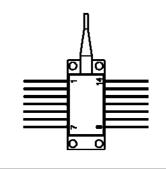
2019-02-26

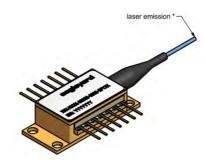
Revision 1.04


2019-02-26

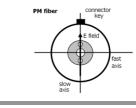
SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Pin Assignment


1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photodiode (Anode)	12	not connected
4	Photodiode (Cathode)	11	Laser Diode (Cathode)
5	Thermistor	10	Laser Diode (Anode)
6	not connected	9	not connected
7	not connected	8	not connected
Pins	are isolated from case unless noted otherwise.		


Package Drawings

Fiber and Connector Type


PM Fiber	900 / 125 / 5.5 $\mu\text{m},$ UV/Polyester-elastomer Coating (l = 1 +/-0.1 m)
Connector	FC/APC (narrow key / 2mm)

Caution. Excessive mechanical stress on the package can lead to a damage of the laser. See <u>instruction manual</u> on www.eagleyard.com

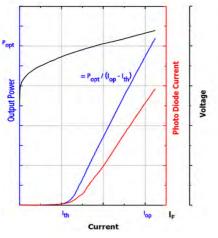
Measurement Conditions / Comments

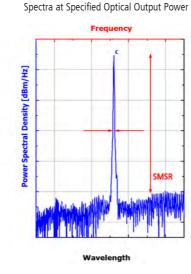
© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

AIZ-16-0222-1415


info@toptica-eagleyard.com www.toptica-eagleyard.com


Revision 1.04

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Typical Measurement Results

Output Power vs. Current

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

info@amstechnologies.com www.amstechnologies-webshop.com

Contact us 🕑

2019-02-26

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

info@toptica-eagleyard.com www.toptica-eagleyard.com

Revision 0.93

2018-03-02

1--

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information

Product	Application
1064 nm DFB Laser	Spectroscopy
with hermetic 8-Pin TO Package (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	Nd:YAG Replacement

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	T _C	°C	-20		75
Operational Temperature at Laser Chip	T _{LD}	°C	10		50
Forward Current	I _F	mA			190
Reverse Voltage	V _R	V			2
Output Power	P _{opt}	mW			90
TEC Current	I _{TEC}	А			1.8
TEC Voltage	V _{TEC}	V			3.2

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	-20		65
Operational Temperature at Laser Chip	T _{LD}	°C	15		40
Forward Current	I _F	mA			170
Output Power	P _{opt}	mW	20		80

Characteristics at T_{LD} = 25° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ _c	nm	1063	1064	1065
Linewidth (FWHM)	Δλ	MHz		2	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.003	
Sidemode Supression Ratio	SMSR	dB	30	45	

Distributor

info@amstechnologies.com www.amstechnologies-webshop.com

Measurement Conditions / Comments Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Measurement Conditions / Comments

measured by integrated Thermistor	

Measurement Conditions / Comments see images on page 4 P_{opt} = 80 mW P_{opt} = 80 mW

Revision 0.93

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at T _{LD} = 25° a	at BOL				cont'd
Parameter	Symbol	Unit	min	typ	max
Laser Current @ $P_{opt} = 80 \text{ mW}$	I _{LD}	mA			170
Slope Efficiency	η	W / A	0.6	0.8	1.1
Threshold Current	I _{th}	mA			70
Divergence parallel (FWHM)	$\Theta_{ }$	0		8	
Divergence perpendicular (FWHM)	Θ_{\perp}	0		21	
Degree of Polarization	DOP	%		90	

Measurement Conditions / Comments				
parallel to short axis of the housing (see p. 3)				
parallel to long axis of the housing (see p. 3)				
80 mW; E field parallel to long axis of housing				

Monitor Diode

Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	µA/mW	0.5		10

Thermoelectric Cooler

Symbol	Unit	min	typ	max
I _{TEC}	А		0.4	
U _{TEC}	V		0.8	
Ploss	W		0.5	
ΔT	К			50
	I _{TEC} U _{TEC}	I _{TEC} A U _{TEC} V	I _{TEC} A U _{TEC} V	I _{TEC} A 0.4 U _{TEC} V 0.8

Thermistor (Standard NTC Type)

Symbol	Unit	min	typ	max
R	kΩ		10	
β			3892	
А			1.1293 x 10	-3
В			2.3410 x 10	-4
C			8.7755 x 10	-8
	R β Α	R kΩ β A	R kΩ β Α Β	R kΩ 10 β 3892 A 1.1293 x 10

Measurement Conditions / Comments $U_R = 5 V$

Measurement Conditions / Comments
$P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 80 \text{ mW}, \Delta T = Tcase - TLD $

_{LD} = 25° C	
$R_{1}/R_{2}=e^{\beta(1/T_{1}\cdot1/T_{2})}$ at $T_{LD}=$	0° 50° C
$I/T = A + B(\ln R) + C(\ln R)^3$	
: temperature in Kelvin	
: resistance at T in Ohm	

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

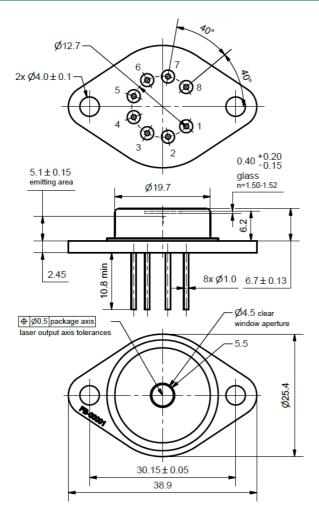
eagleyard Photonics GmbH

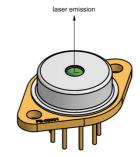
Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

info@toptica-eagleyard.com www.toptica-eagleyard.com

2018-03-02

Revision 0.93


2018-03-02


SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Pin Assignment bottom view Thermoelectric Cooler (+) Laser Diode Anode 1 5 2 Thermistor 6 Monitor Diode Anode ÒP ୕ୖୖଢ଼ଃ 3 Thermistor 7 Photo Diode Cathode Ó ۲ Laser Diode Cathode 8 Thermoelectric Cooler (-) 4 ø All 8 pins are isolated from case.

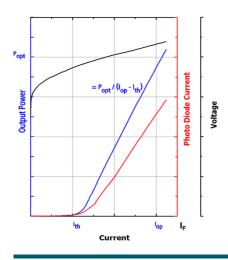
Package Drawings

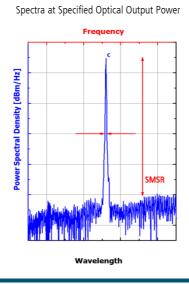
AIZ-16-311-1543-B

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529


info@toptica-eagleyard.com www.toptica-eagleyard.com


Revision 0.93

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Typical Measurement Results

Output Power vs. Current

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

2018-03-02

1-

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

info@toptica-eagleyard.com www.toptica-eagleyard.com

4/4

Revision 0.93


2018-03-02

1--

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information

Product	Application
Tunable 1064 nm DFB Laser	Spectroscopy
with hermetic 8-Pin TO Package (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	Nd:YAG Replacement

Measurement Conditions / Comments Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	T _C	°C	-20		75
Operational Temperature at Laser Chip	T _{LD}	°C	10		50
Forward Current	I _F	mA			190
Reverse Voltage	V _R	V			2
Output Power	P _{opt}	mW			90
TEC Current	I _{TEC}	А			1.8
TEC Voltage	V _{TEC}	V			3.2

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	-20		65
Operational Temperature at Laser Chip	T _{LD}	°C	15		40
Forward Current	I _F	mA			170
Output Power	Popt	mW	20		80
-	-1				

Characteristics at T_{LD} = 25° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ _c	nm	1063	1064	1065
Linewidth (FWHM)	Δλ	MHz		2	
Mode-hop free Tuning Range	$\Delta\lambda_{tune}$	pm		1500	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.003	
Sidemode Supression Ratio	SMSR	dB	30	45	

Distributor

info@amstechnologies.com www.amstechnologies-webshop.com

Contact us

Measurement Conditions / Comments

measured by integrated Thermistor

Measurement Conditions / Comments see images on page 4

80 mW		
$P_{opt} = 80 \text{ mW}$		

Revision 0.93

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at T _{LD} = 25° at BOL						
Parameter	Symbol	Unit	min	typ	max	
Mode-hop free Temperature Range	T _{LD}	° C	15		40	
Mode-hop free Power Range	P _{opt}	mW	20		80	
Laser Current @ $P_{opt} = 80 \text{ mW}$	I _{LD}	mA			170	
Slope Efficiency	η	W / A	0.6	0.8	1.1	
Threshold Current	l _{th}	mA			70	
Divergence parallel (FWHM)	$\Theta_{ }$	0		8		
Divergence perpendicular (FWHM)	Θ_{\perp}	0		21		
Degree of Polarization	DOP	%		90		

parallel to short axis of the housing (see p. 3) parallel to long axis of the housing (see p. 3) 80 mW; E field parallel to long axis of housing

Measurement Conditions / Comments

Monitor Diode

Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	µA/mW	0.5		10

Thermoelectric Cooler

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U _{TEC}	V		0.8	
Power Dissipation (total loss at case)	Ploss	W		0.5	
Temperature Difference	ΔΤ	К			50

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10	-3
Steinhart & Hart Coefficient B	В			2.3410 x 10	-4
Steinhart & Hart Coefficient C	С		;	8.7755 x 10	-8

Measurement Conditions / Comments	

Measurement Conditions / Comments

 $\overline{U_R} = 5 V$

$P_{opt} = 80$ mW, $\Delta T = 20$ K	
$P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$	
$P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$	
$P_{opt} = 80 \text{ mW}, \Delta T = Tcase - TLD $	

$T_{LD} = 25^{\circ} C$	
$R_1/R_2 = e^{\beta(1/T_1-1/T_2)}$ at $T_{LD} =$	0° 50° C
$1/T = A + B(\ln R) + C(\ln R)^{3}$	
T: temperature in Kelvin	
R: resistance at T in Ohm	

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

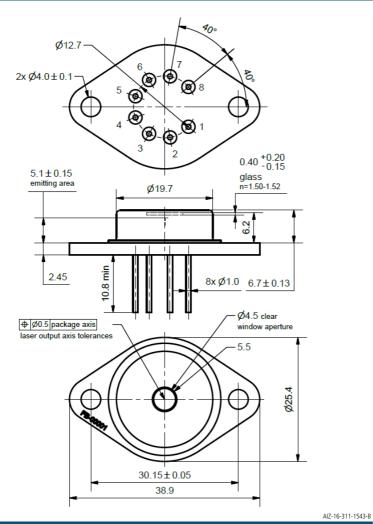
eagleyard Photonics GmbH

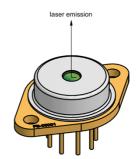
Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

1--

2018-03-02

Revision 0.93


2018-03-02


SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

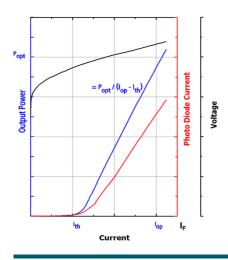
Pin Assignment		
1 Thermoelectric Cooler (+)	5 Laser Diode Anode	bottom view
2 Thermistor	6 Monitor Diode Anode	
3 Thermistor	7 Photo Diode Cathode	
4 Laser Diode Cathode	8 Thermoelectric Cooler (-)	
All 8 pins are isolated from case.		

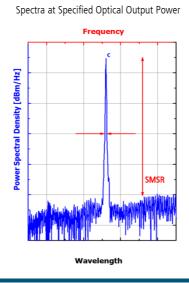
Package Drawings

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529


info@toptica-eagleyard.com www.toptica-eagleyard.com


Revision 0.93

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Typical Measurement Results

Output Power vs. Current

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

info@amstechnologies.com www.amstechnologies-webshop.com

Contact us

CLASS IV LASER PR Complies with 21 CFR 1040.10 and 1040.40

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

Revision 1.04

2020-10-05

TOPTICA

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information

Product	Application
1064 nm DFB Laser for Pulse Mode Operation	Spectroscopy
with hermetic 14 Pin Butterfly Housing (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	Seed Laser
with PM Fiber and Angled Physical Contact (APC)	Sensing

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	T _C	°C	-40		85
Operational Temperature at Laser Chip	T _{LD}	°C	5		50
Forward Current (cw)	I _F	mA			190
Forward Current (pulse mode)	I_{Fpeak}	mA			1600
Reverse Voltage	V _R	V			2
TEC Current	I _{TEC}	А			1.8
TEC Voltage	V _{TEC}	V			3.2
TEC Voltage	V _{TEC}	V			3.2

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	-20		65
Operational Temperature at Laser Chip	T _{LD}	°C	10		40
Forward Current (cw)	I _F	mA			170
Forward Current (pulse mode)	I_{fpeak}	mA			1500

Pulse Mode Conditions

Parameter	Symbol	Unit	min	typ	max
Pulse Width	t _p	ns		10	
Pulse Repetition Rate	RR	kHz		200	
Duty Cycle	D.C.	%		0.2	

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Measurement Conditions / Comments

measured by integrated Thermistor
under cw conditions
under Pulse Mode Conditions

Measurement Conditions / Comments

longer pulses, higher rep rates or duty cycles may damage the laser - other pulse conditions may be applicable but have not been specifically tested

Distributor

info@amstechnologies.com www.amstechnologies-webshop.com

5

This data sheet is subject to change without notice. © eagleyard Photonics

Revision 1.04

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics (Pulse Mode Operation)		ILD selected by eagleyard			
Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	1062	1064	1066
Peak Power	P_{peak}	mW		600	
Sidemode Supression Ratio	SMSR	dB	25		
Wavelength Chirp	I _{LD}	pm			200
Pulse-to-Pulse Stability	ΔP_{peak}	%		3	

Measurement Conditions / Comments at optimum temperature selected by eagleyard at optimum temperature selected by eagleyard at optimum temperature selected by eagleyard Integration >1,000 pulses (infinite persistence)

Characteristics (cw Operation)		T _{LD}	= 25° at	BOL	
Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	1062	1064	1066
Linewidth (FWHM)	Δλ	MHz		2	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dI	nm / mA		0.003	
Laser Current @ Popt = 40 mW	I_{LD}	mA			170
Slope Efficiency	η	W / A	0.2	0.4	0.7
Threshold Current	I _{th}	mA			70

Measurement Conditions / Comments

 $P_{opt} = 40 \text{ mW}$

1--

2020-10-05

Revision 1.04

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Monitor Diode					
Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	µA/mW	1		30

Thermoelectric Cooler

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U _{TEC}	V		0.8	
Power Dissipation (total loss at case)	Ploss	W		0.5	
Temperature Difference	ΔΤ	К			50

$\begin{array}{l} \mbox{Measurement Conditions / Comments} \\ \label{eq:popt} P_{opt} = 40 \mbox{ mW}, \ensuremath{\Delta T} = 20 \mbox{ K} \\ \ensuremath{P_{opt}} = 40 \mbox{ mW}, \ensuremath{\Delta T} = 20 \mbox{ K} \\ \ensuremath{P_{opt}} = 40 \mbox{ mW}, \ensuremath{\Delta T} = 20 \mbox{ K} \\ \ensuremath{P_{opt}} = 40 \mbox{ mW}, \ensuremath{\Delta T} = 20 \mbox{ K} \\ \ensuremath{P_{opt}} = 40 \mbox{ mW}, \ensuremath{\Delta T} = 20 \mbox{ K} \\ \ensuremath{P_{opt}} = 40 \mbox{ mW}, \ensuremath{\Delta T} = 20 \mbox{ K} \\ \ensuremath{P_{opt}} = 40 \mbox{ mW}, \ensuremath{\Delta T} = 20 \mbox{ K} \\ \ensuremath{P_{opt}} = 40 \mbox{ mW}, \ensuremath{\Delta T} = 20 \mbox{ K} \\ \ensuremath{P_{opt}} = 40 \mbox{ mW}, \ensuremath{\Delta T} = 20 \mbox{ K} \\ \ensuremath{P_{opt}} = 40 \mbox{ mW}, \ensuremath{\Delta T} = 20 \mbox{ K} \\ \ensuremath{P_{opt}} = 40 \mbox{ mW}, \ensuremath{\Delta T} = 20 \mbox{ K} \\ \ensuremath{P_{opt}} = 40 \mbox{ mW}, \ensuremath{\Delta T} = 20 \mbox{ K} \\ \ensuremath{P_{opt}} = 40 \mbox{ mW}, \ensuremath{\Delta T} = 10 \mbox{ mm}$

Measurement Conditions / Comments

 $T_{LD} = 25^{\circ} C$ $R_1 / R_2 = e^{\beta (1/T_1 - 1/T_2)}$ $1/T = A + B(ln R) + C(ln R)^3$ T: temperature in Kelvin R: resistance at T in Ohm

Measurement Conditions / Comments

 $U_R = 5 V$

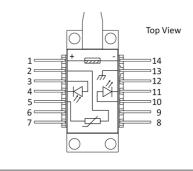
Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10	-3
Steinhart & Hart Coefficient B	В			2.3410 x 10	-4
Steinhart & Hart Coefficient C	C			8.7755 x 10	-8

eagleyard Photonics GmbH Rudower Chaussee 29 12489 Berlin GERMANY www.eagleyard.com info@eagleyard.com fon +49.30.6392 4520

1--

2020-10-05

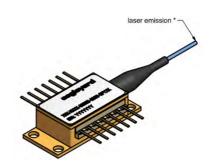

Revision 1.04

2020-10-05

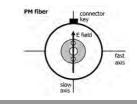
SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Pin Assignment

1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photodiode (Anode)	12	not connected
4	Photodiode (Cathode)	11	Laser Diode (Cathode)
5	Thermistor	10	Laser Diode (Anode)
6	not connected	9	not connected
7	not connected	8	not connected


Package Drawings

Fiber and Connector Type

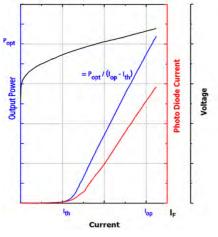

PM Fiber	900 / 125 / 5.5 μm, UV/Polyester-elastomer Coating (I = 1 +/-0.1 m)
Connector	FC/APC (narrow key / 2mm)

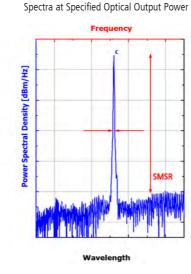
eagleyard Photonics GmbH Rudower Chaussee 29 12489 Berlin GERMANY www.eagleyard.com info@eagleyard.com fon +49.30.6392 4520

Caution. Excessive mechanical stress on the package can lead to a damage of the laser. See <u>instruction manual</u> on www.eagleyard.com

Measurement Conditions / Comments

This data sheet is subject to change without notice. © eagleyard Photonics


AIZ-16-0222-1415


Revision 1.04

SINGLE FREQUENCY LASER DIODES **Distributed Feedback Laser**

Typical Measurement Results

Output Power vs. Current

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

eagleyard Photonics GmbH Rudower Chaussee 29 12489 Berlin GERMANY www.eagleyard.com info@eagleyard.com fon +49.30.6392 4520

This data sheet is subject to change without notice. © eagleyard Photonics

2020-10-05